Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thin film nano solar cells--from device optimization to upscaling.

Identifieur interne : 001683 ( Main/Exploration ); précédent : 001682; suivant : 001684

Thin film nano solar cells--from device optimization to upscaling.

Auteurs : RBID : pubmed:20352759

Abstract

Stainless steel based dye solar cells have been upscaled from small, laboratory size test cells of 0.32 cm2 active area to 6 cm x 6 cm "mini-modules" with active areas ca. 15 cm2. Stainless steel works as the photoelectrode substrate whilst the counter electrode is prepared on indium-doped tin oxide coated polyethyleneterephtalate or polyethylenenaphtalate plastic foil (fluorine-doped tin oxide coated glass as a reference). Additional current collector structures were deposited on the counter electrode substrate with inkjet-printing of silver nanoparticle ink in order to reduce the lateral resistance of the plastic foil. Flexible substrates enable roll-to-roll type industrial manufacturing of the cells and the steel's superior conductivity compared to the typical substrate materials such as glass and plastic makes it possible to prepare even substantially larger modules. The best efficiencies obtained this far with the "mini-module" using a stainless steel photoelectrode are 2.5% with a platinum-sputtered indium-doped tin oxide coated polyethyleneterephtalate counter electrode and 3.4% with a thermally platinized fluorine-doped tin oxide coated glass counter electrode. These efficiencies are on the same level than those measured with small cells prepared with similar methods and materials (3.4%-4.7%, depending on configuration, which are amongst the highest reported for this kind of a dye solar cell). Replacing expensive conducting glass with steel and plastic foils as the substrate materials leads also to economical savings in the cell production.

PubMed: 20352759

Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Thin film nano solar cells--from device optimization to upscaling.</title>
<author>
<name sortKey="Toivola, Minna" uniqKey="Toivola M">Minna Toivola</name>
<affiliation wicri:level="1">
<nlm:affiliation>Helsinki University of Technology, Advanced Energy Systems, Department of Applied Physics, PO Box 5100, FIN-02015 TKK, Finland.</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Helsinki University of Technology, Advanced Energy Systems, Department of Applied Physics, PO Box 5100, FIN-02015 TKK</wicri:regionArea>
</affiliation>
</author>
<author>
<name sortKey="Peltola, Time" uniqKey="Peltola T">Time Peltola</name>
</author>
<author>
<name sortKey="Miettunen, Kati" uniqKey="Miettunen K">Kati Miettunen</name>
</author>
<author>
<name sortKey="Halme, Janne" uniqKey="Halme J">Janne Halme</name>
</author>
<author>
<name sortKey="Lund, Peter" uniqKey="Lund P">Peter Lund</name>
</author>
</titleStmt>
<publicationStmt>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20352759</idno>
<idno type="pmid">20352759</idno>
<idno type="wicri:Area/Main/Corpus">001A29</idno>
<idno type="wicri:Area/Main/Curation">001A29</idno>
<idno type="wicri:Area/Main/Exploration">001683</idno>
</publicationStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Stainless steel based dye solar cells have been upscaled from small, laboratory size test cells of 0.32 cm2 active area to 6 cm x 6 cm "mini-modules" with active areas ca. 15 cm2. Stainless steel works as the photoelectrode substrate whilst the counter electrode is prepared on indium-doped tin oxide coated polyethyleneterephtalate or polyethylenenaphtalate plastic foil (fluorine-doped tin oxide coated glass as a reference). Additional current collector structures were deposited on the counter electrode substrate with inkjet-printing of silver nanoparticle ink in order to reduce the lateral resistance of the plastic foil. Flexible substrates enable roll-to-roll type industrial manufacturing of the cells and the steel's superior conductivity compared to the typical substrate materials such as glass and plastic makes it possible to prepare even substantially larger modules. The best efficiencies obtained this far with the "mini-module" using a stainless steel photoelectrode are 2.5% with a platinum-sputtered indium-doped tin oxide coated polyethyleneterephtalate counter electrode and 3.4% with a thermally platinized fluorine-doped tin oxide coated glass counter electrode. These efficiencies are on the same level than those measured with small cells prepared with similar methods and materials (3.4%-4.7%, depending on configuration, which are amongst the highest reported for this kind of a dye solar cell). Replacing expensive conducting glass with steel and plastic foils as the substrate materials leads also to economical savings in the cell production.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Owner="NLM" Status="PubMed-not-MEDLINE">
<PMID Version="1">20352759</PMID>
<DateCreated>
<Year>2010</Year>
<Month>03</Month>
<Day>31</Day>
</DateCreated>
<DateCompleted>
<Year>2010</Year>
<Month>04</Month>
<Day>19</Day>
</DateCompleted>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1533-4880</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2010</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Journal of nanoscience and nanotechnology</Title>
<ISOAbbreviation>J Nanosci Nanotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>Thin film nano solar cells--from device optimization to upscaling.</ArticleTitle>
<Pagination>
<MedlinePgn>1078-84</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Stainless steel based dye solar cells have been upscaled from small, laboratory size test cells of 0.32 cm2 active area to 6 cm x 6 cm "mini-modules" with active areas ca. 15 cm2. Stainless steel works as the photoelectrode substrate whilst the counter electrode is prepared on indium-doped tin oxide coated polyethyleneterephtalate or polyethylenenaphtalate plastic foil (fluorine-doped tin oxide coated glass as a reference). Additional current collector structures were deposited on the counter electrode substrate with inkjet-printing of silver nanoparticle ink in order to reduce the lateral resistance of the plastic foil. Flexible substrates enable roll-to-roll type industrial manufacturing of the cells and the steel's superior conductivity compared to the typical substrate materials such as glass and plastic makes it possible to prepare even substantially larger modules. The best efficiencies obtained this far with the "mini-module" using a stainless steel photoelectrode are 2.5% with a platinum-sputtered indium-doped tin oxide coated polyethyleneterephtalate counter electrode and 3.4% with a thermally platinized fluorine-doped tin oxide coated glass counter electrode. These efficiencies are on the same level than those measured with small cells prepared with similar methods and materials (3.4%-4.7%, depending on configuration, which are amongst the highest reported for this kind of a dye solar cell). Replacing expensive conducting glass with steel and plastic foils as the substrate materials leads also to economical savings in the cell production.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Toivola</LastName>
<ForeName>Minna</ForeName>
<Initials>M</Initials>
<Affiliation>Helsinki University of Technology, Advanced Energy Systems, Department of Applied Physics, PO Box 5100, FIN-02015 TKK, Finland.</Affiliation>
</Author>
<Author ValidYN="Y">
<LastName>Peltola</LastName>
<ForeName>Time</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Miettunen</LastName>
<ForeName>Kati</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Halme</LastName>
<ForeName>Janne</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lund</LastName>
<ForeName>Peter</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType>Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Nanosci Nanotechnol</MedlineTA>
<NlmUniqueID>101088195</NlmUniqueID>
<ISSNLinking>1533-4880</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>4</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20352759</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV2/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001683 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001683 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV2
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20352759
   |texte=   Thin film nano solar cells--from device optimization to upscaling.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20352759" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IndiumV2 

Wicri

This area was generated with Dilib version V0.5.76.
Data generation: Tue May 20 07:24:43 2014. Site generation: Thu Mar 7 11:12:53 2024